+.png
minus-png-transparent-images-53210.png

Felker AM, Nguyen P, Kaushic C. Primary HSV-2 Infection in Early Pregnancy Results in Transplacental Viral Transmission and Dose-Dependent Adverse Pregnancy Outcomes in a Novel Mouse Model. Viruses. 2021 Sep 25;13(10):1929. doi: 10.3390/v13101929. PMID: 34696359; PMCID: PMC8538385.

Herpes simplex virus type 2 (HSV-2) infection affects 24 million births annually and is associated with adverse pregnancy outcomes, including neonatal herpes; however, the mechanisms underlying in utero transmission of HSV-2 are largely unknown. We examined the effects of primary HSV-2 infection during early pregnancy on gestational outcomes in a novel, clinically relevant mouse model. Pregnant C57BL/6 mice were infected intravaginally with 102-105 pfu/mL HSV-2 on gestation day (gd) 4.5. Controls were infected, nonpregnant, diestrus-staged mice and pregnant, uninfected mice. Compared to nonpregnant mice, pregnant mice were 100-fold more susceptible to HSV-2 infection. Three days post-inoculation (gd7.5), viral DNA was present in implantation sites, but pregnancy outcomes were largely unaffected by infection. Eight days post-inoculation (gd12.5), HSV-2 DNA persisted in placental tissues, resulting in inflammation and hemorrhage. Fetal and placental weights were reduced and fetal loss was observed with high viral doses. HSV-2 DNA and increased expression of pro-inflammatory mediators were detected in fetal tissues at gd12.5, signifying viral transmission and fetal infection, even with low viral doses. This mouse model shows a dose-dependent effect of primary HSV-2 infection on pregnancy outcomes and suggests that fetal loss may occur due to placental inflammation, thus providing valuable insight into in utero transmission of HSV-2.

+.png
minus-png-transparent-images-53210.png

Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol. 2021 Mar 5;11:617516. doi: 10.3389/fimmu.2020.617516. PMID: 33746940; PMCID: PMC7973037.

Although antiretroviral therapy has transformed human immunodeficiency virus-type 1 (HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir, leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur globally each year, with little decrease over many years. Therefore, additional research is required to advance the current state of HIV management, find potential therapeutic strategies, and further understand the mechanisms of HIV pathogenesis and prevention strategies. Non-human primates (NHP) have been used extensively in HIV research and have provided critical advances within the field, but there are several issues that limit their use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with human immune cells and/or tissues, provide a cost-effective and practical approach to create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV infection and disease progression. Here, we highlight how innovations in Hu-mouse models have advanced HIV-1 research in the past decade. We discuss the effect of different background strains of mice, of modifications on the reconstitution of the immune cells, and the pros and cons of different human cells and/or tissue engraftment methods, on the ability to examine HIV-1 infection and immune response. Finally, we consider the newest advances in the Hu-mouse models and their potential to advance research in emerging areas of mucosal infections, understand the role of microbiota and the complex issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to significantly enhance mechanistic research to develop novel strategies for HIV prevention and therapeutics.

+.png
minus-png-transparent-images-53210.png

Wessels JM, Nguyen PV, Vitali D, Mueller K, Vahedi F, Felker AM, Dupont HA, Bagri P, Verschoor CP, Deshiere A, Mazzulli T, Tremblay MJ, Ashkar AA, Kaushic C.

Sci Rep. 2021 Feb 16;11(1):3894. doi: 10.1038/s41598-021-83242-9.

PMID: 33594113

The progestin-based hormonal contraceptive Depot Medroxyprogesterone Acetate (DMPA) is widely used in sub-Saharan Africa, where HIV-1 is endemic. Meta-analyses have shown that women using DMPA are 40% more likely than women not using hormonal contraceptives to acquire Human Immunodeficiency Virus (HIV-1). Therefore understanding how DMPA increases susceptibility to HIV-1 is an important public health issue. Using C57BL/6 mice and our previously optimized humanized mouse model (NOD-Rag1tm1Mom Il2rgtm1Wjl transplanted with hCD34-enriched hematopoietic stem cells; Hu-mice) where peripheral blood and tissues are reconstituted by human immune cells, we assessed how DMPA affected mucosal barrier function, HIV-1 susceptibility, viral titres, and target cells compared to mice in the diestrus phase of the estrous cycle, when endogenous progesterone is highest. We found that DMPA enhanced FITC-dextran dye leakage from the vaginal tract into the systemic circulation, enhanced target cells (hCD68+ macrophages, hCD4+ T cells) in the vaginal tract and peripheral blood (hCD45+hCD3+hCD4+hCCR5+ T cells), increased the rate of intravaginal HIV-1 infection, extended the window of vulnerability, and lowered vaginal viral titres following infection. These findings suggest DMPA may enhance susceptibility to HIV-1 in Hu-mice by impairing the vaginal epithelial barrier, increasing vaginal target cells (including macrophages), and extending the period of time during which Hu-mice are susceptible to infection; mechanisms that might also affect HIV-1 susceptibility in women.

minus-png-transparent-images-53210.png
+.png

Woods MW, Zahoor MA, Lam J, Bagri P, Dupont H, Verschoor CP, Nazli A, Kaushic C.

J Reprod Immunol. 2021 Feb;143:103253. doi: 10.1016/j.jri.2020.103253. Epub 2020 Dec 1.

PMID: 33285485

Medroxyprogesterone acetate (MPA) is a frequently used hormonal contraceptive that has been shown to significantly increase HIV-1 susceptibility by approximately 40 %. However, the underlying mechanism by which this occurs remains unknown. Here, we examined the biological response to MPA by vaginal epithelial cells, the first cells to encounter HIV-1 during sexual transmission, in order to understand the potential mechanism(s) of MPA-mediated increase of HIV-1 infection. Using microarray analysis and in vitro assays, we characterized the response of vaginal epithelial cells, grown in biologically relevant air-liquid interface (ALI) cultures, to physiological levels of female sex hormones, estradiol (E2), progesterone (P4), or MPA. Transcriptional profiling of E2, P4 or MPA-treated vaginal epithelial cells indicated unique transcriptional profiles associated with each hormone. MPA treatment increased transcripts of genes related to cholesterol/sterol synthesis and decreased transcripts related to cell division and cell-cell adhesion, results not seen with E2 or P4 treatments. MPA treatment also resulted in unique gene expression indicative of decreased barrier integrity. Functional assays confirmed that MPA, but not E2 or P4 treatments, resulted in increased epithelial barrier permeability and inhibited cell cycle progression. The effects of MPA on vaginal epithelial cells seen in this study may help explain the increase of HIV-1 infection in women who use MPA as a hormonal contraceptive.

minus-png-transparent-images-53210.png
+.png

Dhawan T, Zahoor MA, Heryani N, Workenhe ST, Nazli A, Kaushic C.
Viruses. 2021 Jan 6;13(1):70. doi: 10.3390/v13010070.
PMID: 33419081

Herpes simplex virus type 2 (HSV-2) is the primary cause of genital herpes which results in significant morbidity and mortality, especially in women, worldwide. HSV-2 is transmitted primarily through infection of epithelial cells at skin and mucosal surfaces. Our earlier work to examine interactions between HSV-2 and vaginal epithelial cells demonstrated that infection of the human vaginal epithelial cell line (VK2) with HSV-2 resulted in increased expression of TRIM26, a negative regulator of the Type I interferon pathway. Given that upregulation of TRIM26 could negatively affect anti-viral pathways, we decided to further study the role of TRIM26 in HSV-2 infection and replication. To do this, we designed and generated two cell lines derived from VK2s with TRIM26 overexpressed (OE) and knocked out (KO). Both, along with wildtype (WT) VK2, were infected with HSV-2 and viral titres were measured in supernatants 24 h later. Our results showed significantly enhanced virus production by TRIM26 OE cells, but very little replication in TRIM26 KO cells. We next examined interferon-β production and expression of two distinct interferon stimulated genes (ISGs), MX1 and ISG15, in all three cell lines, prior to and following HSV-2 infection. The absence of TRIM26 (KO) significantly upregulated interferon-β production at baseline and even further after HSV-2 infection. TRIM26 KO cells also showed significant increase in the expression of MX1 and ISG15 before and after HSV-2 infection. Immunofluorescent staining indicated that overexpression of TRIM26 substantially decreased the nuclear localization of IRF3, the primary mediator of ISG activation, before and after HSV-2 infection. Taken together, our data indicate that HSV-2 utilizes host factor TRIM26 to evade anti-viral response and thereby increase its replication in vaginal epithelial cells.

Bagri P, Ghasemi R, McGrath JJC, Thayaparan D, Yu E, Brooks AG, Stämpfli MR, Kaushic C.
J Virol. 2020 Dec 9;95(1):e01206-20. doi: 10.1128/JVI.01206-20. Print 2020 Dec 9.
PMID: 33028712

Estradiol (E2) is a sex hormone which has been shown to be protective against sexually transmitted infections such as herpes simplex virus 2 (HSV-2). However, few studies have examined the underlying mechanisms by which this occurs. Here, we investigated the effect of E2 on the establishment of memory T cells post-intranasal immunization with HSV-2. CD4+ T cell responses first appeared in the upper respiratory tract (URT) within 3 days postimmunization before being detected in the female reproductive tract (FRT) at 7 days. E2 treatment resulted in greater and earlier Th17 responses, which preceded augmented Th1 responses at these sites. The CD4+ T cells persisted in the URT for up to 28 days, and E2 treatment resulted in higher frequencies of memory T cells. Intranasal immunization also led to the establishment of CD4+ tissue-resident memory T cells (TRM cells) in the FRT, and E2 treatment resulted in increased Th1 and Th17 TRM cells. When the migration of circulating T cells into the FRT was blocked by FTY720, immunized E2-treated mice remained completely protected against subsequent genital HSV-2 challenge compared to non-E2 controls, confirming that TRM cells alone are adequate for protection in these mice. Finally, the enhanced vaginal Th1 TRM cells present in E2-treated mice were found to be modulated through an interleukin 17 (IL-17)-mediated pathway, as E2-treated IL-17A-deficient mice had impaired establishment of Th1 TRM cells. This study describes a novel role for E2 in enhancing CD4+ memory T cells and provides insight on potential strategies for generating optimal immunity during vaccination.

+.png
minus-png-transparent-images-53210.png